You can use pandas.cut
and pandas.DataFrame.groupby
, you just need to make the last bin right boundary more than the actual inclusive boundry you want, e.g., 201
or 200.1
since you are specifying right=False
:
import pandas as pdnums = pd.Series(range(100, 201)) bins_with_labels = pd.cut( x=nums, bins=[100, 135, 160, 175, 190, 201], # For the last bin, you need to use a number larger than the final inclusive right boundary. labels=['[100, 135)', '[135, 160)', '[160, 175)', '[175, 190)', '[190, 200]'], right=False, include_lowest=True,)grouped = nums.groupby(bins_with_labels).apply(list)print(grouped)
Output:
[100, 135) [100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134][135, 160) [135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159][160, 175) [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174][175, 190) [175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189][190, 200] [190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200]